

CRCHUM

Moving beyond single-point Raman spectroscopy: development of a hand-held Raman imaging probe for intraoperative tumor margin assessment

K. ST-ARNAUD^{1,2}, K. AUBERTIN^{1,2}, M. STRUPLER¹, M. JERMYN^{1,3}, K. PETRECCA³, D. TRUDEL², F. LEBLOND^{1,2} ¹Dept. of Engineering Physics, Polytechnique Montreal, ²Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), ³Dept. of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital

SPIE.

METHODS

Wide-field imaging system

Instead of using spectral scanning our new system spatially scans a line across the sample to reconstitute a Raman image. Each line is projected at the entrance slit of the spectrometer. Detection is done using a Andor Newton 920BR-DD CCD camera. Illumination and detection are combined using a dichroic notch filter

Spectral resolution: 13 cm⁻¹ Spectral range: [755-1800]cm⁻¹

IMAGE RECONSTRUCTION

Image reconstruction is possible using Raman spectroscopy to highlight the molecular contrast between adipose and muscle tissue.

Propose solution: Intraoperative Raman spectroscopy

Our goal Develop a Raman imaging probe to help the surgeon clearly visualize the tumor margin using tissue molecular contrast

PREVIOUS WORK

Signal Processing For each pixel:

Hyperspectral line image acquisition $ID(x_i, y_i, \lambda) = Raw(x_i, y_i, \lambda) - D(x_i, y_i, \lambda)$ • **Repetitions:** 3 per line acquisition • **Time:** 2s per line imaging (100 spectra) Darkcount (**D**) substraction (measurement with laser off) • Step size: 100µm $IS(x_i, y_i, \lambda) = ID(x_i, y_i, \lambda) / Tsys(x_i, y_i, \lambda)$ • Intensity: 0.45J/cm^2 (MPE skin: 1.4J/cm^2) Evaluation of the system response (Tsys) using a NIST Raman standard for 785nm (SRM 2241).

To the top the Raman image and below the white light image • Area: 2.6mm X 14.1mm

• **# spectra:** 14 382

• Time acquisition: 288s

To the left the Raman image and to the right the white light image

- Area: 2.6mm X 7.1mm
- **# spectra:** 7242
- **Time acquisition:** 145s

Comparaison with previous system

- Old system

[a.u.]

We developed a handheld Raman imaging system using a coherent fiber bundle. At the distal end of the bundle, a relay lens insures collection of Raman signals and rejection of Rayleigh scattering. At the proximal end, a liquid crystal tunable filter (LCTF) with an EMCCD camera (Nüvü) insures detection of a Raman spectrum for each camera pixel. Hyperspectral Raman images are collected using following spectral scanning.

We were able to reconstruct images of porcine tissue

Measurements

• Spectral resolution: ~15cm⁻¹

• Spatial resolution New system Spectral resolution Intensity | • Signal-to-noise ratio • Field-of-view Time acquisition 1200 1400 1000 1600 800 1800 Wavenumber [cm⁻¹]

A few modification in the optical design could improve the spatial resolution and field-of-view.

Raman images were taken on porcine tissue at the border of muscle and adipose tissue. The spectra were compared with probe measurement using the correlation coefficient of Pearson (r).

- Imaging area 2.6mm X 7.1mm
- 7242 Raman spectra
- Total acquisition time: 145s
- 71 moving steps

Probe measurement Ø = 2mm

Imaging spectrometer

Slit width: 75µm

Wide-field Raman spectrum • Average over 25 spectra

Adipose tissue

Wide-field system

1000

1200

Wavenumber [cm⁻¹]

1400

1600

1800

Raman Probe

r = 0,97

800

Future steps Galvomiror Bundle array Relay lens Imaging spectrometer To avoid any displacement of the sample, we plan to change the current translational stage by a galvomiror in the optical path.

Custom made lens

We currently use off the market lens and optomechanics. Changing for custom made components could improve different aspects of the current system such as: the spatial resolution the field-of-view and the sensitivity.

1. St-Arnaud K. et al, Opt. Lett. 41, 4692-4695 (2016) 2. Jermyn M. et al, Sci. Transl. Med. 7, 274ra19, (2015) 3. J.R. Beattie *et al*, Lipids, **41**(3), 287-294, (2006) 4. J.R. Beattie et al, Meat Sci. 80(4), 1205-1211, (2008)